31 research outputs found

    Ontology-Based Data Access and Integration

    Get PDF
    An ontology-based data integration (OBDI) system is an information management system consisting of three components: an ontology, a set of data sources, and the mapping between the two. The ontology is a conceptual, formal description of the domain of interest to a given organization (or a community of users), expressed in terms of relevant concepts, attributes of concepts, relationships between concepts, and logical assertions characterizing the domain knowledge. The data sources are the repositories accessible by the organization where data concerning the domain are stored. In the general case, such repositories are numerous, heterogeneous, each one managed and maintained independently from the others. The mapping is a precise specification of the correspondence between the data contained in the data sources and the elements of the ontology. The main purpose of an OBDI system is to allow information consumers to query the data using the elements in the ontology as predicates. In the special case where the organization manages a single data source, the term ontology-based data access (ODBA) system is used

    Ontology-based data access: ontop of databases

    Get PDF
    We present the architecture and technologies underpinning the OBDA system Ontop and taking full advantage of storing data in relational databases. We discuss the theoretical foundations of Ontop: the tree-witness query rewriting, T-mappings and optimisations based on database integrity constraints and SQL features. We analyse the performance of Ontop in a series of experiments and demonstrate that, for standard ontologies, queries and data stored in relational databases, Ontop is fast, efficient and produces SQL rewritings of high quality

    On the succinctness of query rewriting over shallow ontologies

    Get PDF
    We investigate the succinctness problem for conjunctive query rewritings over OWL2QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. We show that, over ontologies of depth 1, conjunctive queries have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can be superpolynomial. Over ontologies of depth 2, positive existential and nonrecursive datalog rewritings of conjunctive queries can suffer an exponential blowup, while first-order rewritings can be superpolynomial unless NP �is included in P/poly. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and note that query entailment for such queries is fixed-parameter tractable

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Answering SPARQL queries over databases under OWL 2 QL entailment regime

    Get PDF
    We present an extension of the ontology-based data access platform Ontop that supports answering SPARQL queries under the OWL 2 QL direct semantics entailment regime for data instances stored in relational databases. On the theoretical side, we show how any input SPARQL query, OWL 2 QL ontology and R2RML mappings can be rewritten to an equivalent SQL query solely over the data. On the practical side, we present initial experimental results demonstrating that by applying the Ontop technologies—the tree-witness query rewriting, T-mappings compiling R2RML mappings with ontology hierarchies, and T-mapping optimisations using SQL expressivity and database integrity constraints—the system produces scalable SQL queries

    An introduction to description logics and query rewriting

    Get PDF
    This chapter gives an overview of the description logics underlying the OWL 2 Web Ontology Language and its three tractable profiles, OWL 2 RL, OWL 2 EL and OWL 2 QL. We consider the syntax and semantics of these description logics as well as main reasoning tasks and their computational complexity. We also discuss the semantical foundations for fist-order and datalog rewritings of conjunctive queries over knowledge bases given in the OWL2 profiles, and outline the architecture of the ontology-based data access system Ontop

    STYPES: nonrecursive datalog rewriter for linear TGDs and conjunctive queries

    Get PDF
    We present STYPES, a system that rewrites ontology-mediated queries with linear tuple-generating dependencies and conjunctive queries to equivalent nonrecursive datalog (NDL) queries. The main feature of STYPES is that it produces polynomial-size rewritings whenever the treewidth of the input conjunctive queries and the size of the chases for the ontology atoms as well as their arity are bounded; moreover, the rewritings can be constructed and executed in LOGCFL, indicating high parallelisability in theory. We show experimentally that Apache Flink on a cluster of machines with 20 virtual CPUs is indeed able to parallelise execution of a series of NDL-rewritings constructed by STYPES, with the time decreasing proportionally to the number of CPUs available

    Query Rewriting in RDF Stream Processing

    Get PDF
    Querying and reasoning over RDF streams are two increasingly relevant areas in the broader scope of processing structured data on the Web. While RDF Stream Processing (RSP) has focused so far on extending SPARQL for continuous query and event processing, stream reasoning has concentrated on ontology evolution and incremental materialization. In this paper we propose a different approach for querying RDF streams over ontologies, based on the combination of query rewriting and stream processing. We show that it is possible to rewrite continuous queries over streams of RDF data, while maintaining efficiency for a wide range of scenarios. We provide a detailed description of our approach, as well as an implementation, StreamQR, which is based on the kyrie rewriter, and can be coupled with a native RSP engine, namely CQELS. Finally, we show empirical evidence of the performance of StreamQR in a series of experiments based on the SRBench query set

    From fuzzy to annotated semantic web languages

    Get PDF
    The aim of this chapter is to present a detailed, selfcontained and comprehensive account of the state of the art in representing and reasoning with fuzzy knowledge in Semantic Web Languages such as triple languages RDF/RDFS, conceptual languages of the OWL 2 family and rule languages. We further show how one may generalise them to so-called annotation domains, that cover also e.g. temporal and provenance extensions
    corecore